ar X iv : d g - ga / 9 41 10 15 v 1 3 0 N ov 1 99 4 INTEGRAL GEOMETRY OF PLANE CURVES AND KNOT INVARIANTS
نویسنده
چکیده
We study the integral expression of a knot invariant obtained as the second coefficient in the perturbative expansion of Witten’s Chern-Simons path integral associated with a knot. One of the integrals involved turns out to be a generalization of the classical Crofton integral on convex plane curves and it is related with invariants of generic plane curves defined by Arnold recently with deep motivations in symplectic and contact geometry. Quadratic bounds on these plane curve invariants are derived using their relationship with the knot invariant.
منابع مشابه
Integral Geometry of Plane Curves and Knot Invariants
We study the integral expression of a knot invariant obtained as the second coefficient in the perturbative expansion of Witten's Chern-Simons path integral associated with a knot. One of the integrals involved turns out to be a generalization of the classical Crofton integral on convex plane curves, and it is related with the invariants of generic plane curves recently defined by Arnold, with ...
متن کامل- ga / 9 60 80 01 v 1 7 A ug 1 99 6 Bäcklund transformations and knots of constant torsion
The Bäcklund transformation for pseudospherical surfaces, which is equivalent to that of the sine-Gordon equation, can be restricted to give a transformation on space curves that preserves constant torsion. We study its effects on closed curves (in particular, elastic rods) that generate multiphase solutions for the vortex filament flow (also known as the Localized Induction Equation). In doing...
متن کاملIntegral Geometry of Plane Curvesand Knot
We study the integral expression of a knot invariant obtained as the second coeecient in the perturbative expansion of Witten's Chern-Simons path integral associated with a knot. One of the integrals involved turns out to be a generalization of the classical Crofton integral on convex plane curves and it is related with invariants of generic plane curves recently deened by Arnold, with deep mot...
متن کاملar X iv : m at h / 06 06 00 7 v 1 [ m at h . G T ] 1 J un 2 00 6 Curves of Finite Total Curvature
We consider the class of curves of finite total curvature, as introduced by Milnor. This is a natural class for variational problems and geometric knot theory, and since it includes both smooth and polygonal curves, its study shows us connections between discrete and differential geometry. To explore these ideas, we consider theorems of Fáry/Milnor, Schur, Chakerian and Wienholtz. Here we intro...
متن کاملPolynomial Invariants of Legendrian Links and Plane Fronts
We show that the framed versions of the Kauuman and HOMFLY poly-nomials of a Legendrian link in the standard contact 3-space and solid torus are genuine polynomials in the framing variable. This proves a series of conjectures of 5] and provides estimates for the Bennequin{Tabachnikov numbers of such links. In a series of recent papers 1{3], V. I. Arnold revived interest in the study of plane cu...
متن کامل